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h t m L  A new scenario is proposed for a c!ass of disordered interacting electronic 
systems undergoing a metalinsulator transition. The scenario applies in the absence of 
spin-flip mechanisms U) systems that are not neariy ferromagnetic. At the phase transition 
bath !he spin susceptibility and the coefficient of Ihe Linear term in the speciSc heat 
diverge with identical exponenu, and the eiectrical conducxkily vanishes continuously 
with a different exponent. Approximate valua are given for the critical exponents oi 
ttanspti and thwmcdynamic propenies in three-dimensional systems. 

The metal-insulator transition that occurs in systems without spin-flip mechanisms 
has proven to be very diaicult to describe [l]. The reason has been that in low- 
order renormalization group (RG) calculations the triplet interaction amplitude, IC,, 
scales toward strong coupling much faster than the singlet interaction amplitude, 
ks. As a result, ^/t = lIC,/ksl diverges at a finite scale, indicating that perturbative 
RG methods cannot be used to describe the system. The physical reason for this 
had been speculated to be some kind of spin instability [2], which occurs before or 
simultaneously with the metal-insulator transition (MIT). 

Recently some progress has been made towards resolving this problem [3,4]. It 
was shown in [3] that apart from the long-searched-for MIT there is a second zero- 
temperature phase transition in the system, which leads from a Fermi liquid (n) to 
an incompletely frozen spin (IFS) phase, the latter being a charge conductor. This 
new phase transition was related to the runaway flow encountered in the earlier RG 
calculations and could be described by means of an infinite order resummation of 
perturbation theory. Kirkpatrick and Belitz [3] found that in three dimensions (3D) 
the FLIFS phase transition precedes the MIT if the Fermi-liquid parameter F; is close 
to -1. For smaller values of IF;I we found that -yt does not diverge, even though 
lowest order calculations suggest otherwise. This suggests the phase diagram for 3D 
disordered interacting electrons shown in figure 1. Here I denotes a charge insulator 
phase and g is a dimensionless measure of disorder. For small values of IF;/ it is 
natural to assume a direct &IFS transition, since with -yt staying finite there should 
be no competing instability. Kirkpatrick and Belitz [3] were unable to describe this 
MIT since, amongst other obstacles, they assumed that disorder behaves trivially under 
renormalization. This is true only if -yl + CO. 
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Very recently this picture has been confumed and expanded 141. The resulis for 
our present purposes are as follows. (i) For dimensionalities d > d,  > 2 there always 
exists a multicritical point, M, in the phase diagram. Below this point, T~ remains 
finite under scaling, and no IFS phase exists. (i) For d + d,, M approaches the axis 
F," = 0, and for 2 < d < d,, the IFS phase always separates the n from the I phase. 

For a description of the FLI transition (the line M-C in figure 1) these obser- 
vations have important consequences First of all, since this MIT does not exist in 
a non-vanishing neighbourhood of d = 2, it cannot be described by the customary 
c = d - 2 expansion. This breakdown of the e-expansion is one of the reasons why 
the MIT has so far eluded all attempts at theoretical description. Short of finding an 
upper critical dimensionality for the problem (which has not been possible even for 
the corresponding non-interacting problem) it is impossible to obtain a 'controlled' 
theory in the sense of an +expansion. Furthermore, we have learned that yt does not 
necessarily scale towards infinity, even if the flow equations have been derived in the 
l i t  yl > 1. It is then natural to assume that the %I transition will correspond to a 
fmed point (FP) where both g and yt approach finite values go and -(, respectively. 

In this paper we show that such a FP is indeed present in the two-loop RG 
equations for d = 3. This FP corresponds to the MIT represented by l i e  M-C 
in figure 1. Since, for the reasons given above, our description necessarily lacks a 
small parameter, it is, strictly speaking, a scenario rather than a theory of the MIT. 
Nevertheless it is the first description of a MIT for interacting electrons without spin- 
flip mechanisms that is consistent with all known properties of the system derived 
within well controlled frameworks. 

We start with the two-loop RG equations derived in [SI, 

dg/dx =--E g+(g2/2) [5-3(1  + 1 / ~ t ) l o g ( l + ~ t ) l  (14 

dytldx = (9/4)(1+ - $g27:[5/2 - 1 4 1  + ~ t ) l  (16) 

dh/dE= (h/4)g(3yt- 1) + $hg2y:. (14 

For c = d - 2 > 0, (I) contains the first two non-vanishing contributions to the 
flow equations for g,yt  and h. The one-loop terms in (1) are exact; the two-loop 
terms were derived in the -fl > 1 limit. Here we will use them for yI - O( 1) (and 
g - O(1)). The justscation for the former is that if yI does not scale to infinity it 
must necessarily stay finite. If we find a FP with a finite 7;. this will therefore be 
consistent with our previous integral equation approach in d = 3 [3,4]. The latter 
extension is necessary since in the region close to d = 2, where g* would be small, the 
transition is absent, cf above. In (I), E = log b with b the RG length rescaling factor. 
Equation (1) is valid for electrons interacting via screened Coulomb interactions and 
in (la) the pure localization correction has been taken into a m u n t  [I]. Equation 
(IC) shows the relevance of a finite frequency or temperature as a zero-temperature 
phase transition is approached. 

The numerical solution of (la, b), figure 2, shows that there are several FPS as a 
function of c and initial values of g and yI. The physical FP, if any, is the one that 
first occurs with increasing disorder. For c = 0 (figure Z(a)) and go = g(b = 1) very 
small, g first increases and then decreases and yt diverges at a finite E = log b [I]. 
The ground state in d = 2 is therefore not a Fermi liquid. For larger go one 
finds a stable m (g*,y;) = (0.51,2.08) with an associated separatrix separating 
regions in parameter space when y t  diverges at a finite scale from those where g 
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Figam 1. Schematic phase digram for a three- 
dimensional disordered Fermi liquid. g is a dimen- 
sionlers measure of disorder, and F; is the usual 
Fermi liquid parameter. me three phases s h m n  
an a Fermi liquid (a). an incompletely fmzen spin 
(IFS), and an insulator (I) phase, respectively. No 
information is available a t  -nt about the is1 
phase transition curve (broken awe). In panicu- 
l a r  we do not knau if the broken curve will reach 
the line IF;[ = 1 at a finite disorder. A and C 
denote end poinu of transitlon lines, and M is a 
multisritical point. 

Figure 2. Flm diagram showing the solution of (la, 
6) for three different dimensionalitis d = 2 + f: 
(0) e = 0, (b)  f = 0.05. (c) L = 1. Fixed points 
are denoted by cmsred circles, and separauices by 
broken cu~es .  

diverges at a finite scale. Equation (1) is only capable of describing how metallic 
(small g) behaviour breaks down. For E = 0, this breakdown occurs already at 
arbitrarily small go by means of -yt -+ 00. The Fp is therefore inaccessible and has 
no physical significanck. For 0 < E g 1 (figure 2(b)) and small go, a Fermi liquid FP 
(g* = 0,y; = finite number) is reached. With increasing go, one enters a region 
when again -yt diverges at a finite scale. The separatrix between these two regions can 
be related to the %IFS phase transition [3,4]. Since it involves runaway trajectories, 
this transition requires an infinite resummation of the loop expansion and cannot be 
described by (1); this has been discussed in detail elsewhere [3,4]. For still larger go, 
there is again an inacccessible stable m. 

For E = 0(1), the behaviour of the flow changes again qualitatively, cf figure 2(c). 
For small g,, (and a -yp that is not too large) there always is a Fermi liquid FP. With 
increasing go one reaches the stable m separating g + 00 flow with no -yt -+ 00 

trajectories in between. The Fp is therefore accessible and describes an MIT (line 
M-C in figure 1). For > 1 there is again a separatrix related to the FL~FS phase 
transition (line M-A in figure l), contirming the existence of the multi-critical point 
M in figure 1. 



LAO Letter 10 the Editor 

We conclude that for e larger than a Critical value 0 < cc < 1 there is an 
accessible, stable FP describing an MIT. Because there are no runaway trajectories at 
this FP, we do not have to perform an in6nite resummation as for the pseudo-magnetic 
transition but rather we can use (1) to approximately describe it. Funhennore, we 
know that the FP is unlikely to be an artifact of the two-loop RG equations because 
of our previous work [3,4] which shows that yt must scale to finite value for these 
parameters. 

The MIT FP predicted by (1) is defined by the equations, 

9' = 2e/[5 -3(1 t 1/7:)1og(1 t 7;)l (W 
(2) 5 - N1-t 1/7:)log(l+ 7;) = Y [ e ~ : ~ / ( l  4- 7;)'1[1 - $1og(l 4- $)I. 

Numerically solving (2) gives g' and 7;. In three dimensions, g' N 2.01 and 7; N 

0.84. The linearized RG eigenvalues which give the Critical exponents for the MIT 
are determined by expanding (1) around (g* ,$ ,h*  = 0). Equations (lo) and (lb) 
give one relevant eigenvalue, A, = l/u, related to the correlation length exponent, 
U, and one irrelevant eigenvalue A-. This shows that our FP is indeed stable, cf also 
figure 2. The linearization of the right-hand side of (IC) gives h n / u  (this defines the 
exponent n) and the dynamical scaling exponent is z = d + n/u. For d = 3 the 
predicted exponentc are 

U = 1/A+ = 0.75 A- = -4.08 z = 5.91. (3) 

Near this MIT the electrical conductivity, U, the spin susceptibility, xs, and the 
coeficient of the linear term in the specifc heat, 7 = w.,lC/T, satisfy the scaling 
laws [6,71, 

In (4), t is the dimensionless distance from the MIT at T = 0 and the f, are scaling 
functions. An approximate expression for the line M-C in figure 1 can be determined 
by computing the RG critical surface for our FP. In d = 3 we find 

go = 1.69 t 0.39y,,. (5) 
In three dimensions (4) predicts, for example, 

0.75 ~ ( f  - 0 , T  = 0 )  u t  
l 7 -0 .49  x p ( t  = O,T+ 0) - 

7 (  t = 0 ,  T -t 0) - T-0.49 

We discuss OUT results in the form of some remarks: 
(i) Previously [U] the 7; - cc) FP or phase transition has been discussed in 

considerable detail. In this paper we discuss the only other non-trivial possibility: 
7, --* y; = finite constant. That this possibility can occur is consistent with our 
previous work [3,4]. 
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(i) D e  location of the multi-critical point M in figure 1 is of considerable interest 
from an experimental point of view. In general this is a non-universal quantity which 
is difficult to determine. Our previous integral equation approach suggested that the 
critical F; was close. to -0.7. This value, however, proved to be strongly cut-off 
dependent and a reliable determination is at present not possible. 

(G) We stress that the values of the exponents given by (3) and (6) are only 
approximate, since we are applying an expansion in g to the regime g = O(1). 
Moreover, the solution of (2)  shows that the critical disorder, g*, does not approach 
zero for E + 0. The reason is that our FP loses its physical meaning for E smaller 
than some ec > 0, as pointed out above. 

(iv) Note that (3) satisfies the rigorous inequality [SI v > 2/3(= 2 / d  in d 
dimensions). Also note that this inequality and (40) require that the zero-temperature 
conductivity exponent must satisfy s 2 2/3(s > 2(d - 2) /d ) .  

(v) The multi-critical point M separates the pseudomagnetic behaviour resembling 
enhanced paramagnon of [2,3] from a behaviour of the highly correlated electrons 
that is more reminiscent of a Brinkman-Rice picture [9]. For large ylO, the former 
is realized. The renormalized triplet interaction amplitude, ICt ,  increases strongly 
with increasing disorder, while the singlet interaction amplitude ks is only weakly 
affected [2-4]. For small ylo, the latter is realized, and both IC, and ks increase and 
diverge in identical ways across the line M-C in figure 1. It is physically reasonable 
that this change in behaviour is controlled by the Fermi-liquid parameter F;. 

(vi) Our results bear some resemblance with the local-moment two-fluid picture 
that has been used [lo] to describe doped semiconductors near their MIT. In both 
cases the spin susceptibility and the linear term in the specific heat diverge with 
identical exponents as T - 0. On the other hand, an important difference is that 
the local-moment picture predicts that these quantities also diverge, as T - 0, in 
the metallic phase. This suggests a straightfonvard experimental check to distinguish 
between the two theories: according to our analysis both x,(T -+ 0) and y ( T  -+ 0 )  
should saturate in the metallic phase while in the local moment picture they diverge. 
It is possible, however, that in the local-moment picture the divergence will take the 
form of a very weak singularity [ll] and experimentally the two scenarios may well 
be indistinguishable at realizable temperatures. 

(vs) The best studied system undergoing a M I T  is SI:P with a F; that can be 
estimated to be of order -0.5. If the estimate of the multi-critical point in figure 1 
given in point (ii) above is accurate then the present theory, rather than the IFS 
transition theory, should be relevant for this material. Precision measurements [12] 
of the conductivity in the mK temperature range give a critical exponent close to 0.5. 
As mentioned in point (iv) above, this seems to violate a rigorous inequality. Specific 
heat measurements 1131 deep in the insulator suggest a temperature scale in the 
insulating phase that is less than 1 mK. If this anomalously low scale persists into the 
metallic phase then the experiments are not measuring asymptotic critical exponents 
but rather some effective exponents. This also suggests that the critical regime in this 
system may be immeasurably close to zero temperature. We note in passing that the 
critical exponents given by (a) and (SC) are consistent with experiments [IO, 13,141 
which yielded exponents close to 0.5 or 0.6. 

Apart from this experimental evidence, we also have theoretical evidence that the 
true asymptotic zero-temperature exponents would be observable only at extremely 
low temperatures. From (4) it follows that the temperture is effectively low if T* < 
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tu'. Here T' = T/To is a dimensionless temperature with To 6 Tp. For SkP, 
Tp rz lo2 K. This and (3) give T &: 102t4.4S IC Close to the critical point (T < 
IO-l) this temperature range is much smaller than the one currently accessible by 
experiment [12]. ?ne general point is that a large dynamical scaling exponent implies 
that the zero-temperature behaviour sets in only at very low temperatures. If one 
accepts the validity of the scaling laws, (4), it then follows from the experimental 
observation x J T )  - that z must be close to 2d = 6. We can thus argue 
that the experimentally observed behaviour of xl(T) (and y(T)) already tells us that 
the experiments measuring o(t) were not in the asymptotic low-temperature regime. 
The same scaling argument also predicts that a large Fermi temperature makes the 
low-temperature regime more accessible. 

Finally, for F; = -0.5,  a numerical solution of (1) predicts that on the metallic 
side the Wilson ratio W (W = xs70/7xs0. with x,,, and yo the degenerate eleo 
tron gas values for xr and y) decreases slightly with temperature before increasing 
to about three. The decrease may be an artifact of the approximate RG equations: 
minor changes in (1) lead to a monotonically increasing Wbon ratio with decreasing 
temperature and to larger FP values. Generically, the FP value of y, (which is pro- 
portional to W) at the MIT, y:pm, can be greater than or less than the metallic or 
Fermi liquid FP value, 7rVR. As a function of decreasing temperature, y, will have a 
plateau or valley (if y;'''T, < y:*=) or peak (otherwise) near $'Mm as the MIT is 
approached. In principle this predicted behaviour can be probed experimentally by 
systematically considering systems with different values of T,~.  
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